Сравнительные характеристики газосиликатных блоков (газоблоков) и других стеновых материалов | |||||||
---|---|---|---|---|---|---|---|
Характеристика | Ед. изм. | Силикатный кирпич | Кирпич красный | Керамзитоблок | Пенобетон | Газосиликат | Дерево |
Плотность | кг/м3 | 1900 | 1400-1700 | 1000-1200 | 600 | 500 | 500 |
Теплопроводность | Вт/м’К | 0,51-0,8 | 0,3-0,4 | 0,4-0,4 | 0,2 | 0,11 | 0,14 |
Морозостойкость | цикл | F-35 | F-32 F-35 | F-15 F-35 | F-30 | F-25 | - |
Прочность на сжатие | кг/см2 | 100-200 | 75-125 | 20-50 | 10-15 | 20-30 | 10-15 |
Толщина стены при одинаковой теплопроводности | метр | 1 | 1 | 0,6 | 0,4 | 0,25 | 0,3 |
Расход раствора | м3 | 0,24 | 0,24 | 0,11-0,18 | 0,6 | 0,11 | - |
Время на возведение 1м2 стены | час | 2 | 2 | 0,2-0,9 | 0,2 | 0,12 | 0,5 |
Санитарно-гигиенические нормы:
Наружные стены здания в первую очередь должны обеспечивать санитарно-гигиенический комфорт в помещении. Действующими нормами принято, что такой комфорт будет обеспечен, если в самый лютый мороз перепад температур между внутренней поверхностью наружной стены и внутренним воздухом будет не более 4 градусов.
Для большинства районов Северо-западного и Центрального регионов это требование обеспечивается при сопротивлении стены теплопередаче равном 1,3 – 1,5 м2.оС/Вт. А таким сопротивлением теплопередаче обладает кладка из газобетонных блоков толщиной 150 – 200 мм (в зависимости от плотности 400 или 500 кг/куб.м). До недавних пор все панельные «корабли» в Москве строились с наружными стенами толщиной 240 мм из газобетона марки по средней плотности D600 (примерно 600 кг/куб.м). Сейчас такие же дома по обновленным проектам строятся со стенами толщиной 320 мм (без каких бы то ни было дополнительных утеплителей). При этом такие дома соответствуют действующим строительным нормам и обеспечивают комфортность проживания.
«Теплая» стена – это, прежде всего, стена, обеспечивающая тепловой комфорт. Тепловой комфорт в помещении обеспечивается газобетонной стеной толщиной уже 150 – 200 мм! Именно такой стены достаточно для дачного дома, который в холодный сезон эксплуатируется эпизодически, от случая к случаю. Для двухэтажного дачного дома достаточно кладки из блоков толщиной 200 мм (реже - 250 мм) -как по несущей способности, так и по теплотехническим характеристикам. Дополнительного утепления такой дом не требует.
А теперь несколько слов собственно о требованиях, предъявляемых строительными нормами к наружным стенам жилых зданий, эксплуатируемых постоянно.
Первое требование – обеспечить санитарно-гигиенический комфорт в помещении. Об этом речь шла в предыдущем разделе. Для обеспечения такого комфорта в большинстве районов Центрального и Северо-западного регионов России наружные стены должны обладать сопротивлением теплопередаче равным 1,3 –1,5 м2.оС/Вт. Таким сопротивлением при плотности бетона блоков 400 кг/м3 обладает газобетонная кладка толщиной 150 мм.
Второе требование, предъявляемое нормами к наружным ограждающим конструкциям – содействовать общему снижению расхода энергии на отопление здания.
Для упрощения расчетов, проводимых при проектировании тепловой защиты, введено понятие «нормируемого значения сопротивления теплопередаче» Rreq, которое принимается по простой табличке в зависимости от продолжительности и интенсивности отопительного периода (так называемые «градусо-сутки отопительного периода» в районе строительства). Для Москвы эта табличка предписывает сопротивление теплопередаче стен жилых зданий равное 3,08 м2.оС/Вт.
Эта величина означает, что при постоянном перепаде температур между внутренним и наружным воздухом в 1 оС через стену будет проходить тепловой поток плотностью 1/3,08 = 0,325 Вт/м2. А при средней за отопительный период разнице температур 22 оС плотность теплового потока составит 7,15 Вт/м2. За все 220 суток отопительного периода через каждый квадратный метр стены будет потеряно около 37,5 кВт.ч тепловой энергии. Для сравнения: через каждый квадратный метр окна теряется почти в 6 раз больше энергии – около 225 кВт.ч.
Следующая стадия проектирования тепловой защиты зданий – расчет потребности в тепловой энергии на отопление здания. Как правило, на этой стадии оказывается, что расчетные значения значительно ниже требуемых (т.е. расчетный расход энергии меньше нормативного). В этом случае (при коммерческом строительстве) понижают уровень теплозащиты отдельных ограждений здания или (в случае, когда заказчику предстоит самому эксплуатировать здание) выбирают экономически оптимальное решение: сэкономить на единовременных вложениях или понадеяться на экономию в процессе эксплуатации. Минимальное значение сопротивления теплопередаче наружных стен жилых зданий, до которого можно снижать тепловую защиту – 1,76 м2.оС/Вт.
Таким образом, при новом строительстве в климатических условиях Центрального региона нормативные документы требуют обеспечить для наружных стен жилых зданий сопротивление теплопередаче на уровне 1,76 – 3,08 м2.оС/Вт (СНиП 23-02-2003 «Тепловая защита зданий», ТСН 23-340-2003 СПб «Энергетическая эффективность жилых и общественных зданий»).
Теперь о том, какими теплозащитными характеристиками обладает кладка, выполненная из газобетонных блоков.
- При расчете стены по условиям энергосбережения берем в качестве расчетной среднюю теплопроводность газобетона при эксплуатационнй влажности. Для жилых зданий Санкт-Петербурга и газобетона марки по средней плотности D400 получаем такие значения: расчетная влажность 5%, расчетная теплопроводность 0,117 Вт/м.оС (ГОСТ 31359-2007 «Бетоны ячеистые автклавного твердения»).
- Коэффициент теплотехнической однородности кладки по полю стены (без учета откосов и зон сопряжения с перекрытиями) примем равным 1. Разные расчетные модели показывают, что при кладке на тонком клеевом шве 2±1 мм коэффициент теплотехнической однородности может снижаться до 0,95-0,97, но лабораторные эксперименты и натурные обследования такого снижения не фиксируют. В любом случае – в инженерных расчетах погрешностью в пределах 5% принято пренебрегать.
- Теплоизоляция зон сопряжения с перекрытиями и оконных откосов – это отдельные конструктивные мероприятия, с помощью которых можно добиться повышения теплотехнической однородности до величин даже бόльших единицы.
Теперь по формуле R = 1/αн + δ/λ + 1/αв найдем сопротивление теплопередаче газобетонных кладок разных толщин (при плотности газобетона 400 кг/куб.м).
Толщина кладки, мм |
Сопротивление теплопередаче, м2.оС/Вт |
100 |
1,01 |
150 |
1,44 |
200 |
1,87 |
250 |
2,30 |
300 |
2,72 |
375 |
3,36 |
400 |
3,58 |
Как видно из таблицы, уже при толщине 200 мм стена из газобетона D400 может удовлетворять требованиям, предъявляемым к стенам жилых зданий из условия снижения расхода энергии на отопление. А при толщинах 300 мм и более может использоваться даже без проверки удельного расхода энергии на отопление.
Итак, однослойная газобетонная стена толщиной более 300 мм совершенно самодостаточна с точки зрения нормативных требований к наружным ограждениям жилых зданий.